Admissible velocity propagation: Beyond quasi-static path planning for high-dimensional robots

نویسندگان

  • Quang-Cuong Pham
  • Stéphane Caron
  • Puttichai Lertkultanon
  • Yoshihiko Nakamura
چکیده

Path-velocity decomposition is an intuitive yet powerful approach to address the complexity of kinodynamic motion planning. The difficult trajectory planning problem is solved in two separate and simpler steps : first, find a path in the configuration space that satisfies the geometric constraints (path planning), and second, find a time-parameterization of that path satisfying the kinodynamic constraints. A fundamental requirement is that the path found in the first step should be time-parameterizable. Most existing works fulfill this requirement by enforcing quasi-static constraints in the path planning step, resulting in an important loss in completeness. We propose a method that enables path-velocity decomposition to discover truly dynamic motions, i.e. motions that are not quasi-statically executable. At the heart of the proposed method is a new algorithm – Admissible Velocity Propagation – which, given a path and an interval of reachable velocities at the beginning of that path, computes exactly and efficiently the interval of all the velocities the system can reach after traversing the path while respecting the system kinodynamic constraints. Combining this algorithm with usual sampling-based planners then gives rise to a family of new trajectory planners that can appropriately handle kinodynamic constraints while retaining the advantages associated with path-velocity decomposition. We demonstrate the efficiency of the proposed method on some difficult kinodynamic planning problems, where, in particular, quasi-static methods are guaranteed to fail .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Obstacle-avoiding Path Planning for High Velocity Wheeled Mobile Robots

This paper presents a new motion planning algorithm for wheeled mobile robots in presence of known static obstacles, especially well-suited for high velocity situations. It takes into account several conditions traditionally attached to smooth path planning, i.e. paths with continuous derivative and upper-bounded curvature. It makes use of a global path planner which exploits polynomial G curve...

متن کامل

A Template for Miniature Legged Robots in Quasi-Static Motion

We introduce a low-dimensional kinematic abstraction—i.e., template—for miniature legged robots that can be used for quasi-static motion planning in the horizontal plane. The template comprises a rigid torso and four rigid legs which engage in an alternating tetrapod gait. As the gait is executed, the torso and the legs form two switching four-bar linkages, parameterized by the leg touchdown an...

متن کامل

A template candidate for miniature legged robots in quasi-static motion

The paper introduces the Switching Four-bar Mechanism (sfm), a new low-dimensional kinematic abstraction forminiature legged robots, aimed at quasi-static motion planning in the horizontal plane. The model comprises a rigid torso and four rigid legs which engage in an alternating tetrapod gait. As the gait is executed, the torso and the legs form two switching four-bar linkages, parameterized b...

متن کامل

Time-Optimal Velocity Planning Along Predefined Path for Static Formations of Mobile Robots

This paper is concerned with the problem of finding a time-optimal velocity profile along the predefined path for static formations of mobile robots in order to traverse the path in shortest time and to satisfy, for each mobile robot in the formation, velocity, acceleration, tip over and wheel slip prevention constraints. Time-optimal velocity planning is achieved using so called bang-bang cont...

متن کامل

Kinodynamic Planning in the Configuration Space via Admissible Velocity Propagation

We propose a method that enables kinodynamic planning in the configuration space (of dimension n) instead of the state space (of dimension 2n), thereby potentially cutting down the complexity of usual kinodynamic planning algorithms by an exponential factor. At the heart of this method is a new technique – called Admissible Velocity Propagation (AVP) – which, given a path in the configuration s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • I. J. Robotics Res.

دوره 36  شماره 

صفحات  -

تاریخ انتشار 2017